Decision Tree

1
2
3
4
5
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
1
clf.predict([[1, 1]])
1
2
3
from sklearn.datasets import load_iris
from sklearn import tree
iris=load_iris()

의사결정나무 구축 및 시각화

  • 트리 구축
1
2
clf=tree.DecisionTreeClassifier()
clf=clf.fit(iris.data,iris.target)
  • 트리의 시각화
1
2
3
4
5
6
7
dot_data=tree.export_graphviz(clf,out_file=None,
                             feature_names=iris.feature_names,
                            class_names=iris.target_names,
                              filled=True, rounded=True,
                              special_characters=True
                             )
graph=graphviz.Source(dot_data)

image\

  • Confusion Matrix 구하기
1
2
from sklearn.metrics import confusion_matrix
confusion_matrix(iris.target,clf.predict(iris.data))
array([[50,  0,  0],
       [ 0, 50,  0],
       [ 0,  0, 50]])
updatedupdated2021-03-262021-03-26
Load Comments?