1
2
3
4
5
|
from sklearn import tree
X = [[0, 0], [1, 1]]
Y = [0, 1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)
|
1
2
3
|
from sklearn.datasets import load_iris
from sklearn import tree
iris=load_iris()
|
의사결정나무 구축 및 시각화
1
2
|
clf=tree.DecisionTreeClassifier()
clf=clf.fit(iris.data,iris.target)
|
1
2
3
4
5
6
7
|
dot_data=tree.export_graphviz(clf,out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True
)
graph=graphviz.Source(dot_data)
|
\
1
2
|
from sklearn.metrics import confusion_matrix
confusion_matrix(iris.target,clf.predict(iris.data))
|
array([[50, 0, 0],
[ 0, 50, 0],
[ 0, 0, 50]])