Support Vector Machine
`가장 가까운 K개 점을 선택헤 분류 및 예측
1
2
|
import numpy as np
import matplotlib.pyplot as plt
|
1
2
3
4
5
6
7
8
|
from sklearn import svm, datasets
iris=datasets.load_iris()
X=iris.data[:,:2]
y=iris.target
C=1
clf=svm.SVC(kernel='linear',C=C)
clf.fit(X,y)
|
SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=None, degree=3, gamma='auto', kernel='linear',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
1
2
3
|
from sklearn.metrics import confusion_matrix
y_pred=clf.predict(X)
confusion_matrix(y,y_pred)
|
array([[50, 0, 0],
[ 0, 38, 12],
[ 0, 15, 35]])
2. kernel SVM 적합 및 비교
1
2
3
4
|
clf=svm.LinearSVC(C=C,max_iter=10000)
clf.fit(X,y)
y_pred=clf.predict(X)
confusion_matrix(y,y_pred)
|
array([[49, 1, 0],
[ 2, 30, 18],
[ 0, 9, 41]])
1
2
3
4
|
clf=svm.SVC(kernel='rbf',gamma=0.7,C=C,max_iter=10000)
clf.fit(X,y)
y_pred=clf.predict(X)
confusion_matrix(y,y_pred)
|
array([[50, 0, 0],
[ 0, 37, 13],
[ 0, 13, 37]])
1
2
3
4
|
clf=svm.SVC(kernel='poly',degree=3,C=C,gamma='auto')
clf.fit(X,y)
y_pred=clf.predict(X)
confusion_matrix(y,y_pred)
|
array([[50, 0, 0],
[ 0, 38, 12],
[ 0, 16, 34]])
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def make_meshgrid(x, y, h=.02):
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
return xx, yy
def plot_contours(ax, clf, xx, yy, **params):
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
out = ax.contourf(xx, yy, Z, **params)
return out
|
1
2
3
4
|
iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target
|
1
2
3
4
5
6
|
C = 1.0 #Regularization parameter
models = (svm.SVC(kernel='linear', C=C),
svm.LinearSVC(C=C, max_iter=10000),
svm.SVC(kernel='rbf', gamma=0.7, C=C),
svm.SVC(kernel='poly', degree=3, gamma='auto', C=C))
models = (clf.fit(X, y) for clf in models)
|
1
2
3
4
|
titles = ('SVC with linear kernel',
'LinearSVC (linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel')
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)
for clf, title, ax in zip(models, titles, sub.flatten()):
plot_contours(ax, clf, xx, yy,
cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('Sepal length')
ax.set_ylabel('Sepal width')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
|
